British Journal of Mathematics \& Computer Science
10(4): 1-12, 2015, Article no.BJMCS. 18665
ISSN: 2231-0851

*-Skew Polynomial Rings

W. M. Fakieh ${ }^{1 *}$ and S. K. Nauman ${ }^{1}$
${ }^{1}$ Department of Mathematics, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.

Article Information
DOI: 10.9734/BJMCS/2015/18665
Editor(s):
(1) Sergio Serrano, Department of Applied Mathematics, University of Zaragoza, Spain. Reviewers:
(1) Arvid Siqveland, Buskerud Vestfold University College, Norway.
(2) Piyush Shroff, Mathematics, Texas State University, USA.
(3) Francisco Bulnes, Department in Mathematics And Engineering, Tecnológico De Estudios, Mexico.
(4) Anonymous, Universidade Federal do Rio Grande do Sul, Brazil. Complete Peer review History: http://sciencedomain.org/review-history/10314

Original Research Article

Received: 04 May 2015
Accepted: 25 June 2015
Published: 24 July 2015

Abstract

Let $*$ be an involution over some ring. In this note $*-$ skew polynomial rings over commutative rings are studied along with $*-$ rigidity and $*-$ Armendariz property. Some interesting applications are demonstrated for uniserial rings.

Keywords: *- symmetry; *- rigidity; *- skew Armendariz property; *- skew polynomial rings; uniserial rings.

Mathematics subject classification: $16 \mathrm{~W} 10,16 \mathrm{U} 80$.

1 Introduction

In the associative ring theory, symmetric rings were generalized and extended in various directions by several authors. In these generalizations and extensions rigidity and Armendariz property of rings play crucial roles. The aim of this note is to demonstrate some applications of $*$ - rigidity and $*-$ Armendariz property for $*-$ symmetric rings and $*-$ skew polynomial rings, where $*$ is an involution on the ring.

Lambek in [1] defined that a ring R with 1 is symmetric if for any elements $a, b, c \in R$, $a b c=0 \Rightarrow a c b=0$. For rings with 1 , if $a b c=0 \Rightarrow a c b=0$ (or $b a c=0$,) then it also implies that all other remaining permutational products of these three elements are zero. Cohn in [2] defined that a ring R is reversible if for $a, b \in R, a b=0 \Rightarrow b a=0$. Extending these definitions to rings with involutions, it is defined that a ring R with involution $*$ is $*-$ symmetric if for any elements $a, b, c \in R$,

[^0]$a b c=0 \Rightarrow a c b^{*}=0$, and that R is $*-$ reversible if for $a, b \in R, a b=0 \Rightarrow b a^{*}=0$ (see [3,4]). As in the case of $*-$ reversibility [4], there is no ambiguity between left and right $*-$ reversible rings, same is the case for left and right $*$ - symmetric rings. Quick calculations reveals that if for any elements $a, b, c \in R, a b c=0 \Rightarrow a c b^{*}=0$, then $b^{*} a c=0$. Every $*-$ symmetric ring with 1 is symmetric, but the converse in general need not be true. For example [3; Example 1], for any prime p, consider the ring $\left(Z_{p} \oplus \mathbf{Z}_{p},+, \cdot\right)$ with component-wise addition and multiplication. Clearly $\mathbf{Z}_{p} \oplus \mathbf{Z}_{p}$ is symmetric and reversible but with the exchange involution $*$, it is neither $*-$ symmetric nor $*-$ reversible.

Note that these studies are not applicable for all classes of rings, as there are several classes of rings which do not adhere to an involution. For instance, the class of non-commutative generalized Klein- 4 rings $\mathbf{K}_{2^{n}}$
as studied in [5] and the class of the upper triangular matrix rings of the type $\left[\begin{array}{cc}\boldsymbol{Z}_{2^{k}} & Z_{2} \\ 0 & Z_{2}\end{array}\right]$ as discussed in
([6]; Example 1.5). In the case of commutative rings, every anti-automorphism is an automorphism, and an automorphism of degree 2 is an involution, so that identity map for commutative rings is always an involution.

In the study of rings with involutions rigidity plays important roles: A ring R with the involution $*$ is called * - rigid, if for any $a \in R, a a^{*}=0$, then $a=0$. Clearly, all domains, commutative or non-commutative, are $*-$ rigid, while $Z_{p} \oplus Z_{p}$ with the exchange involution is not $*-$ rigid.

In this paper our aim is to investigate properties of $*-$ skew polynomial rings along with $*$ - Armendariz property. These terms are defined in Section 2. Note that our definition of $*-$ skew polynomial rings forced the ring R to be commutative. So in Section 2 we have assumed that R is commutative. In Section 3 we picked a classic case of a factor polynomial ring of a $*-$ skew polynomial ring, say in the form, $R[x ; *] /\left\langle x^{n}\right\rangle$, which in (upper triangular) matrix form is termed as Barnett matrix ring [7]. We showed that $R[x ; *]$ and its factor ring $R[x ; *] /\left\langle x^{n}\right\rangle$ are very opposite in nature (see Theorem 3.3). The uniserial property for an automorphism on R is also recalled.

Important note on notation: Note that if R is a ring that admits an involution $*$, then in the following the induced involution on a polynomial ring or a matrix ring will also be denoted by $*$. Thus the induced involution on the polynomial $\sum_{i=0}^{\alpha} a_{i} x^{i}\left(\forall a_{i} \in R\right)$ in the polynomial ring $R[x]$ is defined by $\sum_{i=0}^{\alpha} a_{i}^{*} x^{i}$ $\left(\forall a_{i} \in R\right)$. Indeed, this is an involution on $R[x]$. Same are the cases for matrix rings and factor rings.

For definitions and terms from general ring theory [8] is a standard source. For related extensions and properties of symmetric and reversible rings we refer to [9-11] and the references therein. For terms related to $*-$ reversible and $*-$ symmetric rings $[3,4]$ may be referred.

The following results are proved in [3]
Lemma 1.1. For a ring R with involution $*$ the following hold:
(i) If R is reduced and $*$-symmetric, then R is $*$ - reversible.
(ii) If R is *-reversible, then R is symmetric if and only if R is * -symmetric.
(iii) R is $*$-rigid and $*-$ symmetric if and only if R is reduced and $*$-reversible.
(iv) R is *-rigid and semi-commutative if and only if R is semi prime and $*$-symmetric.
(v) If R is $a *$-rigid ring, then the following are equivalent:
(1) R is *-symmetric.
(2) Ris symmetric.
(3) R is $*$-reversible.
(4) R is reversible.

2 * - skew Polynomial Rings

Throughout this section it is assumed that R is a commutative ring with the involution $*$ and with 1 such that $1^{*}=1$. Let x be an indeterminate which associate but do not commute with the elements of R. We define a $*-$ skew polynomial ring as follows:

Definition 2.1. $A^{*}-$ skew polynomial ring $R[x ; *]$ of R is the ring consisting of all left polynomials of the form $\sum_{i=0}^{\alpha} a_{i} x^{i}\left(\forall a_{i} \in R\right)$ with the multiplication defined by using the commutation formula $x a=a^{*} x$ for all $a \in R$.

Remark: If we let \boldsymbol{R} to be any ring, and follow the above commutation formula, we observe that for any elements $a, b \in R$,

$$
x(a b)=(a b)^{*} x=\left(b^{*} a^{*}\right) x=b^{*}(a x)=b^{*}(x a)=\left(b^{*} x\right) a=(x b) a=x(b a) .
$$

This implies that R must be commutative.
The following example shows that there exists a *- skew polynomial ring $R[x ; *]$ over a commutative ring R which is neither commutative nor symmetric.

Example 2.2. Consider the ring $\left(Z_{2} \oplus Z_{2},+,\right)$, where + and \cdot are defined component-wise. This ring always adhere to the exchange involution $*$ defined via, $(a, b)^{*}=(b, a), \forall(a, b) \in \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$. Then $Z_{2} \oplus Z_{2}[x ; *]$ is a $*-$ skew polynomial ring with the commutation:

$$
x(a, b)=(a, b)^{*} x=(b, a) x, \quad \forall(a, b) \in \mathbf{Z}_{2} \oplus \mathbf{Z}_{2} .
$$

Now we see that in $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}[x ; *]$,

$$
\left[(1,0) x^{2}+(1,1) x+(0,1)\right][(0,1) x+(1,0)]=(0,0)
$$

while

$$
[(0,1) x+(1,0)]\left[(1,0) x^{2}+(1,1) x+(0,1)\right]=(0.1) x^{3}+(1,1) x^{2}+(0,1) \neq 0 .
$$

So $Z_{2} \oplus Z_{2}[x ; *]$ is not commutative. Clearly, it is not reversible and because it has 1 , it cannot be symmetric. Moreover, the $*-$ skew polynomial ring $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}[x, *]$ is neither $*-$ symmetric nor $*-$ reversible ([4]; Proposition 5).

Note also one interesting fact that $Z_{2} \oplus Z_{2}$ is reduced but $Z_{2} \oplus Z_{2}[x ; *]$ is not reduced, because $[(0,1) x]^{2}=0$. Further, every $*-$ rigid ring is reduced [8], this shows that $Z_{2} \oplus Z_{2}[x ; *]$ is not $*-$ rigid as well. Hence we have a conclusion that if R is reduced then the skew polynomial ring $R[x ; *]$ may not be reduced, or Armendariz.

In the following we show a deep link between $*-$ skew symmetric rings and $*-$ symmetric rings.

Theorem 2.3. If $R[x ; *]$ is symmetric then R is *- symmetric. The converse holds if R is reduced.
Proof: Assume that $a, b, c \in R$, such that $a b c=0$. Then $a b c x=0$. If $R[x ; *]$ is symmetric then,

$$
\begin{aligned}
& x a b c=\left(a^{*} x\right) b c=0 \Rightarrow b\left(a^{*} x\right) c=\left(b a^{*}\right) x c=\left(b a^{*}\right) c^{*} x=0 \\
& \Rightarrow\left(b a^{*}\right) c^{*}=0 \Rightarrow c a b^{*}=0 \Rightarrow a c b^{*}=0 .
\end{aligned}
$$

Hence R is *- symmetric.
Conversely, let R be *- symmetric and reduced. Consider the following triple product of polynomials in $R[x ; *]$, and balance it to zero.

$$
\begin{equation*}
\left(\sum_{i=0}^{\alpha} a_{i} x^{i}\right)\left(\sum_{j=0}^{\beta} b_{j} x^{j}\right)\left(\sum_{k=0}^{\gamma} c_{k} x^{k}\right)=0 . \tag{1}
\end{equation*}
$$

We need to prove that $R[x ; *]$ is symmetric. This means we will prove that

$$
\begin{equation*}
\left(\sum_{i=0}^{\alpha} a_{i} x^{i}\right)\left(\sum_{k=0}^{\gamma} c_{k} x^{k}\right)\left(\sum_{j=0}^{\beta} b_{j} x^{j}\right)=0 . \tag{2}
\end{equation*}
$$

By (1) the constant term is

$$
\begin{equation*}
a_{0} b_{0} c_{0}=0 \Rightarrow a_{0} c_{0} b_{0}=0 \tag{3}
\end{equation*}
$$

The coefficients of x yield:

$$
\begin{align*}
& a_{0} b_{0} c_{1}+a_{0} b_{1} c_{0}^{*}+a_{1} b_{0}^{*} c_{0}^{*}=0 . \tag{4}\\
& \Rightarrow b_{0} c_{0} a_{1} b_{0}^{*} c_{0}^{*}=0 \Rightarrow a_{1} b_{0} c_{0} a_{1} b_{0}^{*} c_{0}^{*}=0
\end{align*}
$$

Because R is $*-$ symmetric, so the symmetry and reducibility of R yields

$$
a_{1} b_{0}^{*} c_{0}^{*}=0 \Rightarrow a_{1} c_{0}^{*} b_{0}^{*}=0
$$

Then,

$$
\begin{aligned}
a_{0} b_{0} c_{1}+a_{0} b_{1} c_{0}^{*} & =0 \Rightarrow c_{0} a_{0} b_{1} c_{0}^{*}=0 \Rightarrow a_{0} b_{1} c_{0} a_{0} b_{1} c_{0}^{*}=0 \Rightarrow a_{0} b_{1} c_{0}^{*}=0 \\
& \Rightarrow c_{0} a_{0} b_{1}=0 \Rightarrow a_{0} c_{0} b_{1}=0
\end{aligned}
$$

Again

$$
a_{0} b_{0} c_{1}+a_{0} b_{1} c_{0}^{*}=0 \Rightarrow a_{0} b_{0} c_{1}=0 \Rightarrow a_{0} c_{1} b_{0}^{*}=0
$$

Hence

$$
\begin{equation*}
a_{0} c_{0} b_{1}+a_{0} c_{1} b_{0}^{*}+a_{1} c_{0}^{*} b_{0}^{*}=0 \tag{5}
\end{equation*}
$$

Let us collect the coefficients of x^{2} at one place:

$$
\begin{equation*}
a_{0} b_{0} c_{2}+a_{0} b_{2} c_{0}+a_{2} b_{0} c_{0}+a_{0} b_{1} c_{1}^{*}+a_{1} b_{1}^{*} c_{0}+a_{1} b_{0}^{*} c_{1}^{*}=0 \tag{6}
\end{equation*}
$$

We need to get:

$$
\begin{equation*}
a_{0} c_{0} b_{2}+a_{0} c_{2} b_{0}+a_{2} c_{0} b_{0}+a_{0} c_{1} b_{1}^{*}+a_{1} c_{1}^{*} b_{0}+a_{1} c_{0}^{*} b_{1}^{*}=0 \tag{7}
\end{equation*}
$$

This can be obtained by multiplying (6) by $a_{0} b_{1} c_{1}, a_{1} b_{1} c_{0}$, and $a_{1} b_{0} c_{1}$, consecutively, and apply the rules of $*$ - symmetric rings and reducibility, we get

$$
a_{0} c_{1} b_{1}^{*}=a_{1} c_{1}^{*} b_{0}=a_{1} c_{0}^{*} b_{1}^{*}=0
$$

which leads to (7). The same processes will be continued until all terms are exhausted.
A ring R is called Armendariz, if for any pair of polynomials, $(f(x), g(x))=\left(\sum_{i=0}^{\alpha} a_{i} x^{i}, \sum_{j=0}^{\beta} b_{j} x^{j}\right)$ in $R[x], \forall a_{i}, b_{j} \in R$, where x is some commuting indeterminate, if $f g=0$, then each product $a_{i} b_{j}=0$.

For a non-commutative indeterminate, $\alpha-$ skew Armendariz rings were introduced in [9]. Following this concept, we introduce here $*-$ skew-Armendariz property for $*-$ skew symmetric rings. We need a modification in the original definition of the Armendariz property.

Definition 2.4. A ring R is called $*-$ skew-Armendariz if for any pair of polynomials, $\left(\sum_{i=0}^{\alpha} a_{i} x^{i}, \sum_{j=0}^{\beta} b_{j} x^{j}\right)$ in $R[x ; *], \forall a_{i}, b_{j} \in R$, where x is some indeterminate satisfying the commutation
formula, $x a=a^{*} x, \forall a \in R$, whenever

$$
\left(\sum_{i=0}^{\alpha} a_{i} x^{i}\right)\left(\sum_{j=0}^{\beta} b_{j} x^{j}\right)=0
$$

then $\quad \forall j=0,1,2,3, \cdots$,

$$
\left\{\begin{array}{c}
a_{i} b_{j}=0 \text { if } i=0,2,4, \cdots \\
a_{i} b_{j}^{*}=0 \text { if } i=1,3,5, \cdots
\end{array}\right\} .
$$

The following are outcomes of the Theorem 2.3 (see also $[9,11]$).
Lemma 2.5: If R is $*$-rigid, then R is reduced and $*-$ skew Armendariz.
Proof: First notice that if R is $*$ - rigid, then R becomes non-singular and hence reduced ([8]; Lemma 7.9 \& Corollary 7.12).

Now let $(f(x), g(x))=\left(\sum_{i=0}^{\alpha} a_{i} x^{i}, \sum_{j=0}^{\beta} b_{j} x^{j}\right)$ be a pair of polynomials in $R[x ; *], \forall a_{i}, b_{j} \in R$, such that $f g=0$. Then
(1) $a_{0} b_{0}=0$, and
(2) $a_{0} b_{1}+a_{1} b_{0}^{*}=0 \Rightarrow$

$$
a_{0} b_{0} b_{1}+a_{1} b_{0} b_{0}^{*}=0 \Rightarrow a_{1} b_{0} a_{1}^{*} b_{0}^{*}=0 \Rightarrow a_{1} b_{0}^{*}=0 \Rightarrow a_{0} b_{1}=0
$$

(3) $a_{0} b_{2}+a_{1} b_{1}^{*}+a_{2} b_{0}=0 \Rightarrow$

$$
\begin{aligned}
& b_{0} b_{0}^{*}\left(a_{0} b_{2}+a_{1} b_{1}^{*}+a_{2} b_{0}\right)=0 \Rightarrow b_{0} b_{0}^{*} a_{2} b_{0}=0 \Rightarrow\left(a_{2} b_{0}\right)^{2}\left(\left(a_{2} b_{0}\right)^{2}\right)^{*}=0 \Rightarrow a_{2} b_{0}=0 \\
& a_{0} b_{2}+a_{1} b_{1}^{*}=0 \Rightarrow a_{1} b_{1} a_{1}^{*} b_{1}^{*}=0 \Rightarrow a_{1} b_{1}^{*}=0 \Rightarrow a_{0} b_{2}=0
\end{aligned}
$$

(4) $\quad a_{0} b_{3}+a_{1} b_{2}^{*}+a_{2} b_{1}+a_{3} b_{0}^{*}=0$.

Again we get,

$$
\begin{aligned}
& b_{0} b_{0}^{*} a_{3} b_{0}^{*}=0 \Rightarrow\left(a_{3} b_{0}^{*}\right)^{2}\left(\left(a_{3} b_{0}^{*}\right)^{2}\right)^{*}=0 \Rightarrow a_{3} b_{0}^{*}=0 \\
& a_{0} b_{3}+a_{1} b_{2}^{*}+a_{2} b_{1}=0 \Rightarrow b_{1} b_{1}^{*} a_{2} b_{1}=0 \Rightarrow\left(a_{2} b_{1}\right)^{2}\left(\left(a_{2} b_{1}\right)^{2}\right)^{*}=0 \Rightarrow a_{2} b_{1}=0
\end{aligned}
$$

Finally,

$$
a_{0} b_{3}+a_{1} b_{2}^{*}=0 \Rightarrow\left(a_{1} b_{2}^{*}\right)\left(a_{1} b_{2}^{*}\right)^{*}=0 \Rightarrow a_{1} b_{2}^{*}=0 \Rightarrow a_{0} b_{3}=0
$$

We continue until we get all products in the form $a_{i} b_{j}=0$ for even i, and $a_{i} b_{j}=0$ for odd i. Which shows that R is $*-$ skew Armendariz.

Theorem 2.6. The following are equivalent:
(1) $R_{\text {is } *}$ - rigid;
(2) $R[x ; *]$ is reduced;
(3) R is reduced and $R[x ; *]$ is symmetric;
(4) R is reduced and $*$-symmetric.

Proof: $(1) \Longleftrightarrow(2)$ First assume that R is $*-$ rigid. Let, $f(x)=\sum_{i=0}^{\alpha} a_{i} x^{i}$ be a polynomial in $R[x ; *]$ such that $f(x)^{2}=0$. Then because R is $*-$ Armendariz, for even subscripts we get $a_{i}^{2}=0 \Rightarrow a_{0}=0$, because R is reduced, and for odd subscripts, $a_{i} a_{i}^{*}=0 \Rightarrow a_{i}=0$. Hence $f(x)=0$.

Conversely, if $R[x ; *]$ is reduced, then being subring, R is reduced. Now let, for any $a \in R, a a^{*}=0$. Then $(a x)^{2}=0 \Rightarrow a x=0$. Hence $a=0$.
$(2) \Rightarrow(3)$ Clearly every reduced ring is symmetric.
$(3) \Rightarrow(4)$ Holds from Theorem 2.3.
(4) \Rightarrow (1) Let for any $a \in R, a a^{*}=0 \Rightarrow a a=0 \Rightarrow a=0$.

Corollary 2.7. Let a ring R be $*-$ rigid and $f(x)=\sum_{i=0}^{\alpha} a_{i} x^{i}, g(x)=\sum_{j=0}^{\beta} b_{j} x^{j} \in R[x ; *]$. Then $f(x) g(x)=0$ if and only if $a_{i} b_{j}=0$ for all $0 \leq i \leq \alpha, 0 \leq j \leq \beta$.

Proof: Let $f(x) g(x)=0$. Because R is $*$ - rigid, by Lemma $2.5, R$ is $*-$ skew Armendariz. So $a_{i} b_{j}=0$ if i is even and $a_{i} b_{j}^{*}=0$ if i is odd. Because R is also reduced, so it is reversible and by Lemma 1.1, it is $*-$ reversible. Hence $a_{i} b_{j}=0$ for all $I=1, \cdots, \alpha$. The converse is trivial.

Corollary 2.8. If R is reduced and $*-$ skew - Armendariz, then R is * symmetric. Hence $R[x ; *]$ is symmetric.

Corollary 2.9. If R is $a *-$ skew - Armendariz ring, then $R[x ; *]$ is symmetric if and only if R is * symmetric.

It is clear that R is non-singular if and only if $R[x]$ is non-singular. We prove the following.

Corollary 2.10. Let R be *-Armendariz. R is non-singular if and only if $R[x ; *]$ is non-singular.
Proof: It is already known that R is non-singular if and only if R is reduced. Being reduced and $*-$

Armendariz, R becomes $*-$ symmetric.

Now let $f(x)=\sum_{i=0}^{\alpha} a_{i} x^{i} \in R[x ; *]$. Assume that

$$
g(x)=\sum_{i=0}^{\beta} b_{i} x^{i} \in r_{R[x ; *]}\langle f(x)\rangle \cap f(x) R[x ; *],
$$

where $r_{R[x ; *]}\langle f(x)\rangle$ is the right annihilator of the ideal $\langle f(x)\rangle$ in $R[x ; *]$. Then $f(x) g(x)=0$ and for some $h(x)=\sum_{i=0}^{\gamma} c_{i} x^{i} \in R[x ; *], g(x)=f(x) h(x)$, which give

$$
\begin{aligned}
& b_{0}=a_{0} c_{0} \Rightarrow b_{0}^{2}=b_{0} a_{0} c_{0} \Rightarrow 0 \Rightarrow b_{0}=0 \\
& b_{1}=a_{0} c_{1}+a_{1} c_{0}^{*} \Rightarrow b_{1} b_{1}=a_{0} b_{1} c_{1}+a_{1} b_{1} c_{0}^{*} \Rightarrow b_{1} b_{1}=a_{1} b_{1} c_{0}^{*} \Rightarrow \\
& \quad \Rightarrow b_{1}\left(b_{1}-a_{1} c_{0}^{*}\right)=0 \Rightarrow b_{1}^{*}\left(b_{1}-a_{1} c_{0}^{*}\right)=0 \Rightarrow b_{1}^{*} b_{1}=0 \Rightarrow b_{1}=0 \\
& b_{2}=a_{0} c_{2}+a_{1} c_{1}+a_{2} c_{0}^{*} \Rightarrow b_{2}^{2}=a_{0} b_{2} c_{2}+a_{1} b_{2} c_{1}+a_{2} b_{2} c_{0}^{*} \Rightarrow b_{2}\left(b_{2}-a_{1} c_{1}\right)=0
\end{aligned}
$$

By a similar argument as above, we conclude that $b_{2}=0$. Continuing in this way, eventually, we will get that $g(x)=0$. Hence the right annihilator ideal $r_{R[x ; *]}\langle f(x)\rangle$ is non-singular. We conclude that $R[x ; *]$ is right non-singular. Analogously, one can prove that it is left non-singular, hence non-singular.

Recall that an ideal I of a ring R is called $*-$ rigid, if for any $r \in R, r r^{*} \in I \Rightarrow r \in I$. Also I is completely semiprime if and only if for any $r \in R, r^{2} \in I \Rightarrow r \in I$.

Proposition 2.11. For $a *$ - ideal I of R the following statements are equivalent:
(i) I is $a *$-rigid ideal.
(ii) I is completely semiprime, R / I is $*$-Armendariz, and $(R / I)[x ; *]$ is reduced

Proof: $(i) \Rightarrow(i i)$ Let I be $*$ - rigid. If for any $r \in R, r^{2} \in I \Rightarrow\left(r r^{*}\right)\left(r r^{*}\right)^{*} \in I \Rightarrow$ $r r^{*} \in I \Rightarrow r \in I$. Now let for any $a \in R,(a+I)\left(a^{*}+I\right)=0$. Then $a a^{*} \in I \Rightarrow a \in I \Rightarrow R / I$ is $*-$ rigid. Hence by Lemma 2.5. R / I is reduced and $*-$ Armendariz.
(ii) \Rightarrow (i) Assume that $a a^{*} \in I$ for some $a \in R$. Then

$$
(a+I)\left(a^{*}+I\right)=0 \Rightarrow(a+I) x(a+I) x=0 \Rightarrow a+I=0 \Rightarrow a \in I
$$

* - skew Laurent polynomial rings can be defined analogously to that of $*-$ skew polynomial rings. Hence
we have:
Proposition: 2.12. Let R be a commutative ring with an involution $*$. Then $R[x ; *]$ is $*-$ skew Armendariz if and only if the $*-$ skew Laurent polynomial ring $R\left[x, x^{-1} ; *\right]$ is $*-$ skew Armendariz.

Proof: Let $(f(x), g(x))=\left(\sum_{i=-s}^{\alpha} a_{i} x^{i}, \sum_{j=-t}^{\beta} b_{j} x^{j}\right)$ be a pair of polynomials in $R\left[x, x^{-1} ; *\right], \forall a_{i}, b_{j} \in R$, such that $f g=0$. Then $\left(x^{s} f(x), g(x) x^{t}\right)$ is a pair of polynomials in $R[x ; *]$ such that

$$
x^{s} f(x) g(x) x^{t}=0
$$

Because $R[x ; *]$ is $*-$ skew Armendariz which implies that either $a_{i} b_{j}^{*}=0$, or $a_{i}^{*} b_{j}=0$, or $a_{i} b_{j}=0$, or $a_{i}^{*} b_{j}^{*}=0$ for all $-s \leq i \leq \alpha$ (with proper consideration of i to be even or odd) and $\forall j$, such that $-t \leq j \leq \beta$. Hence $R\left[x, x^{-1} ; *\right]$ is $*-$ skew Armendariz. Converse is trivial.

3 Applications

3.1. First we discuss a general situation. Let R be a ring with 1 , and not necessarily commutative. Let $R[x ; \sigma]$ be the σ - skew polynomial ring, in literature also termed as a twisted polynomial ring, where σ is an endomorphism on R. Then $R[x ; \sigma] /\left\langle x^{n}\right\rangle$ is a finite ring with a descending chain of principal ideals:

$$
\langle x\rangle \supseteq \cdots \supseteq\left\langle x^{n-1}\right\rangle \supseteq\left\langle x^{n}\right\rangle=0
$$

This ring can also be written in the Barnett matrix form:

$$
T_{n}(R, \sigma)=\left\{\left[a_{i j}\right]: \forall a_{i j} \in R: \begin{array}{lll}
a_{i j}=0, & \forall i>j & i, j=1,2, \cdots, n \tag{a}\\
a_{i j}=a_{j-i}, & \forall i \leq j & i, j=1,2, \cdots, n
\end{array}\right\}
$$

Then,

$$
R[x ; \sigma] /\left\langle x^{n}\right\rangle \cong T_{n}(R ; \sigma)
$$

The isomorphism can be achieved in a compatible way by making a natural modification in the matrix multiplication. So, let $\left\lfloor a_{i j}\right\rfloor\left\lfloor b_{i j}\right\rfloor \in T_{n}(R, \sigma)$, with the rules of $3(\mathrm{a})$, and $\left\lfloor a_{i j}\right\rfloor\left\lfloor b_{j k}\right\rfloor=\left[c_{i k}\right\rfloor$, where

$$
\begin{equation*}
c_{i k}=\sum_{j=1}^{n} a_{i j} \sigma^{k-i}\left(b_{j k}\right) \tag{b}
\end{equation*}
$$

Naturally, in 3(b) rules of 3(a) apply.
3.2. Let $\sigma=1$ and t a commutative indeterminate. We write $T_{n}(R)$ in stead of $T_{n}(R, 1)$. Thus, if R
is $*$ - symmetric, then so is $R[t] /\left\langle t^{n}\right\rangle$. Hence for a commutative R with an involution $*$, the $*-$ skew polynomial rings $R[t] /\left\langle t^{n}\right\rangle[x ; *]$ and $T_{n}(R)[x ; *]$ are symmetric. Several properties which are stated in Section 2, hold for R and extended rings in the form of factor polynomial rings and also in the form of Barnett matrix rings

$$
T_{n}(R)[x ; *] \cong \frac{R[t]}{\left\langle t^{n}\right\rangle}[x ; *]
$$

Theorem 3.3: Let R be commutative and self-injective:
(a) Then the following are equivalent:
(1) R is von Neumann regular;
(2) R is semi-hereditary;
(3) R is Rickert;
(4) R is Baer;
(5) R is non-singular;
(6) R is reduced.
(b) If R admits a rigid involution $*$, then the $*-$ skew polynomial ring $R[x ; *]$ satisfies all properties from (1) to (6) as listed in (a).
(c) The factor polynomial ring $R[x ; *] /\left\langle x^{n}\right\rangle$ or the matrix ring $T_{n}(R, *)$ is not among any class of rings from (1) to (6) as listed in (a).

Proof: (a) Follows from ([8]; (7.50, 7.52)).
(b) If R is self-injective, then so is $R[x ; *]$. If R is $*-$ rigid, then by Theorem 2.6., $R[x ; *]$ is reduced, and so non-singular. The rest follows from ([8]; (7.50, 7.52)).
(c) Clearly, $R[x ; *] /\left\langle x^{n}\right\rangle$ admits nilpotent elements so it is not reduced. The central elements of $R[x ; *] /\left\langle x^{n}\right\rangle$ are of the form $x^{2}+\left\langle x^{n}\right\rangle, x^{4}+\left\langle x^{n}\right\rangle, x^{2}+x^{4}+\left\langle x^{n}\right\rangle, \cdots$, etc., and because these are nilpotent elements, they become singular (see the details in ([8]; (7.11)). Hence $R[x ; *] /\left\langle x^{n}\right\rangle$ is singular. Again by $[8 ;(7.50)] R[x ; *] /\left\langle x^{n}\right\rangle$ is not among any class of rings from (1) to (6) as listed above.
3.4. Let F_{q} be a finite field of characteristic p, where q is some power of p. Let σ be an endomorphism on F_{q}, then one can always construct the σ-skew polynomial ring $\mathrm{F}_{q}[x ; \sigma]$. If $\sigma \neq 1$, then $\mathrm{F}_{q}[x ; \sigma]$ is non-commutative. Then the factor polynomial ring factored by $\left\langle x^{n}\right\rangle$ is

$$
F=\frac{\mathrm{F}_{q}[x ; \sigma]}{\left\langle x^{n}\right\rangle} \cong T_{n}\left(\mathrm{~F}_{q} ; \sigma\right)
$$

for all $n \in \mathrm{~N}$.
Clearly, F_{q} is $*-$ rigid for any involution $*$, it is non-singular, and hence $\mathrm{F}_{q}[x ; *]$ is $*-$ rigid, reduced, non-singular, $*-$ symmetric, $*-$ reversible, etc., with $*$ considered as an induced involution on polynomials. Moreover $\mathrm{F}_{q}[x ; *]$ satisfies all six equivalent conditions of Theorem 3.3 (a and b).

But by Theorem 3.3(c) F satisfies none of these six conditions of Theorem 3.3(a).
On the other hand $\mathrm{F}_{q}[x ; \sigma] /\left\langle x^{n}\right\rangle$ or $T_{n}\left(\mathrm{~F}_{q} ; \sigma\right)$ has another interesting property as noticed in [12] and [13]:

Recall that a ring with 1 is right uniserial if it has a finite and unique composition series of right ideals. The ring is uniserial if it is both left and right uniserial.

Proposition 3.5. $T_{n}\left(\mathrm{~F}_{q} ; \sigma\right)$ is a finite uniserial ring. Moreover, if S is a finite uniserial ring with the Jacobson radical J, then

$$
S \cong T_{n}\left(\mathrm{~F}_{q} ; \sigma\right)
$$

for some automorphism $\varrho_{o n} \mathrm{~F}_{q}$ and $q=|S / J|$.
Proof: The finite ring $T_{n}\left(\mathrm{~F}_{q} ; \sigma\right)$ is clearly uniserial as $\mathrm{F}_{q}[x ; \sigma] /\left\langle x^{n}\right\rangle$ is uniserial because it has a unique chain of ideals

$$
\langle x\rangle \supseteq \cdots \supseteq\left\langle x^{n-1}\right\rangle \supseteq\left\langle x^{n}\right\rangle=0
$$

The rest holds from [13; Corollary 6] (see also [14; Theorem]).
Finally, Theorem 5.8 of [6] reveals that:
Corollary 3.6. $F=\mathrm{F}_{q}[x ; \sigma] /\left\langle x^{n}\right\rangle$ admits an anti-automorphism if and only if σ is an involution on F_{q}. Moreover, if \subseteq is an involution, then F admits an involution.

4 Conclusion

This paper is in continuation of our investigations on *-reversible and *-symmetric rings published in [4] and [3], respectively. In this work we have studied *-skew polynomial rings and demonstrated some links with uniserial rings $[13,14]$, and with the recent work of Wood on self-dual codes over non-commutative rings [6].

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Lambek J. On the representation of modules by sheaves of factor modules. Canadian Mathematical Bulletin. 1971;14:359-368.
Available: http://dx.doi.org/10.4153/CMB-1971-065-1
[2] Cohn PM. Reversible rings. Bulletin of the London Mathematical Society. 1999;31(6):641-648. Available: http://dx.doi.org/10.1112/S0024609399006116
[3] Fakieh WM. Symmetric rings with involutions. British J Math \& Comp Sci. 2015;8:492-505. DOI: 10.9734/BJMCS/2015/17267
[4] Fakieh WM, Nauman SK. Reversible rings with involutions and some minimalities. The Scientific World Journal. 2013;8. Article ID: 650702.
Available: http://dx.doi.org/10.1155/2013/650702
[5] Shafee BM, Nauman SK. On extensions of right symmetric rings without identity. Advances in Pure Math. 2014;4:665-673.
Available: http://dx.doi.org/10.4236/apm.2014.412075
[6] Wood JA. Anti-isomorphisms, character modules, and self-dual codes over non-commutative rings. International J of Information and Coding Theory. 2010;1(4):429-444. DOI: 10.1504/IJICOT.2010.032867
[7] Veldsman S. Matrix and polynomial reversibility of rings. Communications in Algebra. 2015;43: 1571-1582.
[8] Lam TY. Lectures on modules and rings. Graduate Texts in Mathematics. 189, Springer-Verlag, New York; 1999.
[9] Hong CY, Kimb NK, Kwak TK. On skew Armendariz rings. Communications in Algebra. 2003;31(1):103-122.
[10] Pourtaherian H, Rakhimov IS. On skew version of reversible rings, International J of Pure and Applied Mathematics. 2011;73(3):267-280.
[11] Yakoub LB, Louzari M. Ore extensions of extended symmetric and reversible rings. International J Algebra. 2009;3(9):423-433.
[12] Clark WE, Drake DA. Finite chain rings, Abh. Math. Sem. Univ. Hamburg. 1973;39:1473-163.
[13] Mano T. Uniserial rings and skew polynomial rings. Tokyo J Math. 1984;7(1):209-213.
[14] Jain SK, Luh J, Zimmermann-Huisgen B. Finite uniserial rings of prime characteristic. Communications in Algebra. 1988;16(10):2133-2135.
© 2015 Fakieh and Nauman; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]
[^0]: *Corresponding author: wfakieh@kau.edu.sa;

[^1]: Peer-review history:
 The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
 http://sciencedomain.org/review-history/10314

